
Towards Stealthy Malware Detection1

Salvatore J. Stolfo, Ke Wang, Wei-Jen Li

Department of Computer Science

Columbia University

Abstract
Malcode can be easily hidden in document files and go undetected by

standard technology. We demonstrate this opportunity of stealthy malcode

insertion in several experiments using a standard COTS Anti-Virus (AV)

scanner. Furthermore, in the case of zero-day malicious exploit code,

signature-based AV scanners would fail to detect such malcode even if the

scanner knew where to look. We propose the use of statistical binary

content analysis of files in order to detect suspicious anomalous file

segments that may suggest insertion of malcode. Experiments are

performed to determine whether the approach of n-gram analysis may

provide useful evidence of a tainted file that would subsequently be

subjected to further scrutiny. We further perform tests to determine

whether known malcode can be easily distinguished from otherwise

“normal” Windows executables, and whether self-encrypted files may be

easy to spot. Our goal is to develop an efficient means by static content

analysis of detecting suspect infected files. This approach may have value

for scanning a large store of collected information, such as a database of

shared documents. The preliminary experiments suggest the problem is

quite hard requiring new research to detect stealthy malcode.

1 This work was partially supported by a grant from ARDA under a contract with

Batelle, Pacific Northwest Labs.

1. Introduction

Attackers have used a variety of ways of embedding malicious code in

otherwise normal appearing files to infect systems. Viruses that attach

themselves to system files, or normal appearing media files, are nothing

new. State-of-the-art COTS products scan and apply signature analysis to

detect these known malware. For various performance optimization

reasons, however, COTS Anti-Virus (AV) scanners may not perform a

deep scan of all files in order to detect known malcode that may have been

embedded in an arbitrary file location. Other means of stealth to avoid

detection are well known. Various self-encryption or code obfuscation

techniques may be used to avoid detection simply making the content of

malcode unavailable for inspection by an AV scanner. In the case of new

zero day malicious exploit code, signature-based AV scanners would fail

to detect such malcode even if the scanner had access to the content and

knew where to look.

In this chapter we explore the use of statistical content analysis of

files in order to detect anomalous file segments that may suggest infection

by malcode. Our goal is to develop an efficient means of detecting suspect

infected files for application to scanning a large store of collected

information, such as a database of content in a file sharing network. The

work reported in this chapter is preliminary. Our ongoing studies have

uncovered a number of other techniques that are under development and

evaluation. Here we present background summary on our work on

Fileprints, followed by several experiments applying the method to

malcode detection.

The threat model needs to be clarified in this work. We do not

consider the methods by which stealthy malcode embedded in tainted files

may be automatically launched and executed. One may posit that detecting

a tainted file may be easy simply by opening the file and detecting whether

the application issues a fault. This might be the case if the malcode was

embedded in such a way as to damage the expected file format causing the

application to fault. As we show in section 2, one can embed malcode

without creating such a fault when opening a tainted file. In this work, we

focus specifically on static analysis techniques to determine whether or not

we may be able to identify a tainted file. The approach we propose is to

use generic statistical feature analysis of binary content irrespective of the

type of file used to transport the malcode into a protected environment.

Files typically follow naming conventions that use standard

extensions describing its type or the applications used to open and process

3

the file. However, although a file may be named Paper.doc2, it may not be

a legitimate Word document file unless it is successfully opened and

displayed by Microsoft Word, or parsed and checked by tools, such as the

Unix file command, if such tools exist for the file type in question. We

proposed a method to analyze the contents of exemplar files using

statistical modeling techniques. In particular, we apply n-gram analysis to

the binary content of a set of exemplar “training” files and produce

normalized n-gram distributions representing all files of a specific type.

Our aim is to determine the validity of files claiming to be of a certain type

(even though the header may indicate a certain file type, the actual content

may not be what is claimed) or to determine the type of an unnamed file

object.

The conjecture is that we may model different types of files to

produce a model of what all files of that type should look like. Any

significant deviation from this model may indicate the file is infected with

embedded malcode. Suspect files identified using this technique may then

be more deeply analyzed using a variety of techniques under investigation

by other researchers (e.g., [9, 16, 18].)

In our prior work [11, 19, 20], we demonstrated an efficient

statistical n-gram method to analyze the binary contents of network

packets and files. This work followed our earlier work on applying

machine learning techniques applied to binary content to detect malicious

email attachments [15]. The method trains n-gram models from a

collection of input data, and uses these models to test whether other data is

similar to the training data, or sufficiently different to be deemed an

anomaly. The method allows for each file type to be represented by a

compact representation of statistical n-gram models. Using this technique,

we can successfully classify files into different types, or validate the

declared type of a file, according to their content, instead of using the file

extension only or searching for embedded “magic numbers” [11] (that may

be spoofed).

We do not presume to replace other detection techniques, but

rather to augment approaches with perhaps new and useful evidence to

detect suspicious files. Under severe time constraints, such as real-time

testing of network file shares, or inspection of large amounts of newly

acquired media, the technique may be useful in prioritizing files that are

subjected to a deeper analysis for early detection of malcode infection.

2 For our purposes here, we refer to .DOC as Microsoft Word documents, although

other applications use the .DOC extension such as Adobe Framemaker, Interleaf

Document Format, and Palm Pilot format, to name a few.

In the next section, we describe some simple experiments of

inserting malware into normal files and how well a commercial AV

scanner performed in detecting these infected files. Amazingly, in several

cases the tainted files were opened without problem by the associated

application. Section 3 summarizes our work on fileprints using 1-gram

distributions for pedagogical reasons. The same principles apply to higher

order grams. We present several experiments using these techniques to

detected infected files. Our concluding remarks in section 4 identify

several areas of new work to extend the preliminary ideas explored in this

paper.

2. Deceiving anti-virus software

Malware may be easily transmitted among machines as (P2P) network

shares. One possible stealthy way to infect a machine is by embedding the

malicious payload into files that appear normal and that can be opened

without incident. A later penetration by an attacker or an embedded Trojan

may search for these files on disk to extract the embedded payload for

execution or assembly with other malcode. Or an unsuspecting user may

be tricked into launching the embedded malcode in some crafty way. In the

latter case, malcode placed at the head of a PDF file can be directly

executed to launch the malicious software. Social engineering can be

employed to do so. One would presume that an AV scanner can check and

detect such infected file shares if they are infected with known malcode for

which a signature is available. The question is whether a commercial AV

scanner can do so. Will the scanning and pattern-matching techniques

capture such embeddings successfully? An intuitive answer would be

“yes”. We show that is not so in all cases.

We conducted the following experiments. First we collected a set

of malware [22], and each of them was tested to verify they can be

detected by a COTS anti-virus system3. We concatenate each of them to

normal PDF files, both at the head and tail of the file. Then we manually

test whether the COTS AV can still detect each of them, and whether

Acrobat can open the PDF file without error. These tests were performed

3 This work does not intend to evaluate nor denigrate any particular COTS

product. We chose a widely used AV scanner that was fully updated at the time

the tests were performed. We prefer not to reveal which particular COTS AV

scanner was used. It is not germane to the research reported in this paper.

5

on a Windows platform. The results are summarized in table 1. The COTS

anti-virus system has surprisingly low detection rate on these infected files

with embedded malware, especially when malware is attached at the tail.

For those that were undetected, quite a few can still be successfully opened

by Acrobat appearing exactly as the untouched original file. Thus, the

malcode can easily reside inside a PDF file without being noticed at all.

An example of the manipulated PDF file is displayed in figure 1. The

apparent reason Adobe Acrobat Reader (version 7.0) opens infected files

with no trouble is that it scans the head of a file looking for the PDF

“magic numbers” signaling the beginning header meta-data necessary to

interpret the rest of the binary content. Thus, the portions passed over by

the reader while searching for its header data provides a convenient place

to hide malcode.

Table 1. COTS AV detection rate and Acrobat behavior on embedded malcode.

Virus at the head of PDF Virus at the tail of PDF
Total

virus/worm
AV can

detect

Acrobat can

open

AV can

detect

Acrobat can

open

223 162 (72.6%) 4 /not detected 43 (19.3%)
17 /not

detected

Fig. 1. Screenshot of original and malware embedded PDF file

We also performed another experiment by inserting the malware

into some random position in the middle of the PDF file. But since PDF

has its own encoding and such blind insertion can easily break the

encoding, generally this is easily noticed by the Acrobat Reader when

opening the file. This was the case and hence malware simply appended to

the head/tail is obviously easier without causing any errors by the reader.

We repeated this experiment on DOC files using some selected malwares,

and got a similar result. The following table provides the detailed results of

several malware insertion experiments using well known malware. Only

CRII can be reliably detected no matter where it is inserted, while

Slammer and Sasser were missed.

Table 2. Detailed example of insertion using several well-known malware

Slammer

 Virus at head In the middle At tail

PDF file
Not detect/open

fine

Not detect/open

error

Not detect/open

fine

DOC file
Not detect/open

error

Not detect/open

error

Not detect/open

fine

CodeRed II

Can be detected anywhere

Sasser

 Virus at head In the middle At tail

PDF file Can detect
Not detect/open

error

Not detect/open

error

DOC file Can detect
Not detect/open

error

Not detect/open

fine

Another experiment focused on Windows executables, like

WINWORD.EXE. After analyzing the byte value distributions of

executables, we noticed that byte value 0 dominated all others. Application

executables are stored on disk using a standard block alignment strategy of

padding of executables (falling at addresses n*4096) for fast disk loading.

These zero’ed portions of application files provide ample opportunity to

insert hidden malcode. Instead of concatenating malcode, in this case we

insert the malcode in a continuous block of 0’s long enough to hold the

7

whole malcode and store the file back on disk. Again, we tested whether a

COTS AV scanner would detect these poisoned applications. It did not.

We performed this experiment by replacing the padded segments of

WINWORD.EXE, from byte positions 2079784 to 2079848. Figure 2

shows two versions of the application, the normal executable and the other

infected with malcode, and both were able to open DOC files with no

trouble.

Fig. 2. Opening of a normal DOC file using the original WINWORD.EXE (left)

and the infected one WINWORD-Modified.EXE (right).

3. N-gram experiments on files

Here we introduce the modeling and testing techniques and present the

results of applying these techniques to detect tainted malware-embedded

files from normal files of the same type.

3.1 Fileprints – n-gram distributions of file content

An n-gram [4] is a subsequence of n consecutive tokens in a stream of

tokens. N-gram analysis has been applied in many tasks, and is well

understood and efficient to implement. By converting a string of data to a

feature vector of n-grams, one can map and embed the data in a vector

space to efficiently compare two or more streams of data. Alternatively,

one may compare the distributions of n-grams contained in a set of data to

determine how consistent some new data may be with the set of data in

question. In our work to date, we experimented with both 1-gram and 2-

gram analysis of ASCII byte values. The sequence of binary content is

analyzed, and the frequency and variance of each gram is computed. Thus,

in the case of 1-grams, two 256-element vectors (histograms) are

computed. This is a highly compact and efficient representation, but it may

not have sufficient resolution to represent a class of file types.

Nevertheless, we test this conjecture by starting with 1-grams. The

following plot shows that different file types do indeed have significant

distinct 1-gram patterns. Thus, different file types can be reasonably well

classified using this technique (see [11]).

Fig. 3. 1-gram distribution for different file types.

9

Once a set of models are computed from a set of normal files, a

test file is measured to determine how closely its content conforms to the

normal models. This is accomplished by computing the Mahalanobis dis-

tance [20] between the test file in question and the normal (centroid) mod-

els previously computed. The score produced is a distance measure; a dis-

tance threshold is then used to determine whether to declare the file normal

or not.

3.2 Truncation and multiple centroids

Truncation simply means we model only a fixed portion of a file when

computing a byte distribution. That portion may be a fixed prefix, say the

first 1000 bytes, or a fixed portion of the tail of a file, as well as perhaps a

middle portion. This has several advantages. First, for most files, it can be

assumed that the most relevant part of the file, as far as its particular type

is concerned, is located early in the file to allow quick loading of meta-

data by the handler program that processes the file type. Second, viruses

often have their malicious code at the very beginning of a file. Hence,

viruses may be more readily detected from this portion of the file.

However, viruses indeed may also be appended to the end of a file, hence

truncation may also be applied to the tail of a file to determine whether a

file varies substantially from the expected distribution of that file type. The

last, truncation dramatically reduces the computing time for model

building and file testing.

On the other hand, files with the same extension do not always

have a distribution similar enough to be represented by a single model. For

example, EXE files might be totally different when created for different

purpose, such as system files, games, or media handlers. Thus, an

alternative strategy for representing files of a particular type is to compute

“multiple models”. We do this via a clustering strategy. Rather than

computing a single model MA for files of type A, we compute a set of

models M
k
A , k>1. The multiple model strategy requires a different test

methodology, however. During testing, a test file is measured against all

centroids to determine if it matches at least one of the centroids. The set of

such centroids is considered a composite fileprint for the entire class. The

multiple model technique creates more accurate models, and separates

foreign files from the normal files of a particular type in more precise

manner. The multiple models are computed by the K-Means algorithm

under Manhattan Distance as the similarity metric. The result is a set of K

centroid models,

M
k
A which are later used in testing files for various

purposes.

3.3 Data sets

To test the effectiveness of the n-gram analysis on files, we conducted

several experiments to determine whether it can correctly classify files and

whether it can detect malcode.

The test files used in the experiments include 140 PDF files. The

malicious files used for embedding were collected from emails, internet

sources [22] and some target honeypot machines setup for this purpose in

our lab. The PDF files were collected from the internet using a general

search on Google. In this way, they can be considered randomly chosen as

an unbiased sample. These tests are preliminary; considerable more effort

is needed to compose a proper set of training and test data to ensure the

files in question represent a true sample of interest. Here we collected

documents from an open source and have no means to accurately

characterize whether this sample is truly representative of a collection of

interest. Nevertheless, this experiment provides some evidence of whether

the proposed techniques show promise or not.

3.4 Detecting malware embedded files

First we revisit our malcode embedding experiment. We’ve seen that the

COTS AV system we used can easily miss the malcode hidden inside

normal appearing files. Here we apply the 1-gram analysis and see how

well it may be able to detect the malicious code sequences. 100 of the 140

PDF files were used to build head and tail 1-gram models. Then we tested

the remaining 40 normal PDF files and hundreds of malware-embedded

files against the model. Since we know ground truth, we measure the

detection rate exactly when the false positive rate is zero, i.e., no normal

PDF files been misclassified as malware-infected. The result is displayed

in table 3, which is much higher than the COTS anti-virus software

detection rate, which for these files is effectively zero. Notice that the total

number of malware-embedded files is different for different truncation

sizes. That is because the malware used in this study differ in size and we

only consider the problem of classifying a pure malcode block fully

embedded in a portion of the PDF file. We consider a concatenated PDF

file as a test candidate only if the malcode size is equal to or greater than

the truncation size used for modeling.

11

Table 3. Detection rate using truncated head and tail modeling

Models head N bytes

1000 bytes 500 bytes 200 bytes
Detect

49/56(87.5%) 314/347(90.5%) 477/505(94.5%)

Models tail N bytes

1000 bytes 500 bytes 200 bytes
Detect

42/56(75%) 278/347(80.1%) 364/505(72.1%)

It may be the case that it is easier to detect the malcode if it is

concatenated at the head or tail of a file, since different file types usually

have their own standard header information and ending encoding. Malcode

may be significantly different from these standardized encodings.

However, we test whether malware can effectively be hidden in some

middle portion of a file (presuming that the file would still possibly be

opened correctly). A reasonable assumption about such insertion is that the

malware is inserted as a continuous whole block. So we apply the n-gram

detection method to each block of a file’s binary content and test whether

the model can distinguish PDF blocks from malware blocks. If so, then we

can detect the malcode hidden inside PDF files.

We compute byte distribution models using N consecutive byte

blocks from 100 PDF files, then test the blocks of the malware and another

40 PDF files against the model, using Mahalanobis distance. Figure 3

shows the distance of the malware blocks and PDF blocks to the normal

model, using N=500 byte blocks and N=1000 byte blocks, respectively. In

the plot we display the distance of the malcode blocks on the left side of

the separating line and the normal PDF on the right. As the plots show,

there is a large overlap between malcode and PDF blocks. The poor results

indicate that malware blocks cannot be easily distinguished from normal

PDF file blocks using 1-gram distributions.

Fig. 4. The Mahalanobis distance of the normal PDF and malware blocks to the

trained PDF block model. The left is 500-byte block and the right plot is 1000-

byte block.

In order to understand why the block-based detection using 1-

grams does not work well, we plot the byte distribution of each block of a

normal PDF file and the Sasser worm code. The first 9 blocks of the PDF

file and the first 6 blocks of Sasser are displayed in the following plots.

These plots clearly show that different blocks inside a PDF file differ

much in their byte distribution, and we cannot determine an absolute

difference of the malcode blocks from PDF blocks. Therefore, it appears

that a 1-gram statistical content analysis might not have sufficient

resolution for malware block detection. Either higher order grams (perhaps

2-grams or 3-grams) may suffice, or we may need more syntactic

information about the file formats to adequately distinguish malcode

embedded in PDF files. A search for better statistical features is part of our

ongoing research.

13

(a) PDF file

(b) Slammer worm

Fig. 5. Byte value distributions of blocks of the PDF file and Sasser worm.

3.5 Classifying normal executables and viruses

In this experiment, we use a collection of malcode executables gathered

from other external sources, and compare the 1-gram and 2-gram

distributions of these to the corresponding distributions of “normal”

Windows executables to determine whether viruses exhibit any clear

separating characteristics. We conjecture that the Windows executables are

generated by programming environments and compilers that may create

standard “headers” different from those used by virus writers who deliver

their viruses via email or file shares.

We apply three modeling methods to these experiments, which are

one-centroid, multi-centroids and exemplar files as centroids. The one

centroid method trains one single model for each class (or type) of file. We

build n models M1, M2, …, Mn, from n different file types. Then, we

compute the distance of the test file F to each model, and F is classified to

the model with the closest distance.

Alternatively, the multi-centroids method, we build k models Mt
1,

M
t
2, …, M

t
k using k-means algorithm for each file type t as described in

section 3.2. There are k*T models in total, where T is the number of file

types. k is set to 10 in this test. The test strategy is the same as in the case

of one centroid. The test file F is classified to the model with the closest

distance.

A third method is also tested. Here we use a set of exemplar files

of each type as centroids. Thus, a set of randomly chosen normal files for

each file type are used as centroids. There are N models if there are N

chosen exemplar files. We also analyze the accuracy of the method using

different truncations – first 10, 50, 100, 200, 400, 600, 1000, 2000, 4000,

6000, and 8000 bytes, and the entire file. In this experiment, we evaluate

both 1-gram and 2-gram analysis.

We trained models on 80% of the randomly selected files of each

group (normal and malicious) to build a set of models for each class. The

remaining 20% of the files are used as test files. Again, we know ground

truth and hence can accurately evaluate performance. Note that all of the

malicious files extensions are EXE. For each of the test files, we evaluate

their distance from both the “normal model” and the “malicious model”.

31 normal application executable files, 45 spyware, 331 normal executable

under folder System32 and 571 viruses were tested. Three “pairs” of

groups of files are tested – Normal executable vs. spyware, normal

application vs. spyware and normal executable vs. viruses. We report the

average accuracy over 100 trials using cross validation for each of the

modeling techniques.

The results are shown in figure 6. Each column represents each

modeling method: one-centroid, muli-centroids and exemplar file

centroids. The rows indicate the testing “pairs”. In each plot, the X and Y-

axis are the false positive rate and detection rate, respectively. The asterisk

marks are 1-gram tests using different truncation sizess, and the circle

marks represent the results of 2-gram centoids. In these plots, the

truncation sizes are not arranged in order. In these two dimensional plots,

the optimum performance appears closest to the upper left corner of each

15

plot. That is to say, a false positive rate of 0 and a detection rate of 1 is

perfect performance.

The results show relatively good performance in some case of

normal executable vs. spyware and normal executable vs. virus. Because

viruses and worms usually target the System32 folder, we can reasonable

well detect non-standard malicious files in that folder. Moreover, the

performance results varied under different truncation sizes. Thus, we have

considerable additional analysis to perform in our future work to identify

appropriate file sizes (and normalization strategies) to improve detection

performance. However, the plots clearly indicate that performance varies

widely, which suggests the comparison method is too weak to reliably

detect malicious code.

Fig. 6. 2-class classification of malware and normal EXE files. X-Axis: false

positive, Y-Axis: detection rate. Asterisk marks: 1-gram test, Circle marks: 2-

gram test.

Notice that there is a high false positive rate in the case of testing

normal applications to the Spyware samples. This is due to two reasons.

First, the range of the normal application file size is too large, ranging

from 10KB to 10MB. It is hard to normalize the models when the data

ranges so widely. Second, the spyware files are somewhat similar to

normal application files. They are both MS Windows applications, and

they may be used for similar purposes. Hence, other features may be

necessary to explore ways of better distinguishing this class of files.

In the experiments performed to date, there is no strong evidence

to indicate that 2-gram analysis is better than 1-gram analysis. Even

though the 1-gram memory usage is much smaller and the computation

speed is much faster, we may need to analyze far more many files to

determine whether the heavy price paid in performing 2-gram analysis will

perform better ultimately.

3.6 Uniform Distributions of 1-gram analysis: encrypted
files and spyware

In this experiment we scan Windows files to determine whether any are

close to a uniform 1-gram distribution. We thus test whether spyware that

is obfuscated by self-encryption technology may be revealed as

substantially different from other executable files on a Windows host

platform. We conjecture that self-encrypted files, such as stealthy Trojans

and spyware, may be detectable easily via 1-gram analysis.

The normal EXE from System32, spyware and virus files used in

the experiments reported in the previous section are used here again.

Moreover, we randomly select 600 files (DOC, PPT, GIF, JPG, PDF,

DLL) from Google, 100 for each type. Since the models are normalized,

the uniform distribution is an array with uniform value 1/n, where n is the

length of the array and n is 256 in the 1-gram test. For each of the test files,

we compute the Manhattan distance against the uniform model and plot the

distance in figure 7. The files that are closest to uniform distribution are

listed in table 7.

As the plot shows, JPG, GIF and PDF files are self-encoded, so

they are more similar to the uniform distribution. System32 files and DLL

files are not self-encrypted, and most of the virus and spyware tested are

also not self-encrypted. However, some of the normal files are self-

encrypted and quite similar to the random distribution. An interesting

example is the application ad-aware.exe, which is a COTS adware

detection application that apparently uses self-encryption, perhaps to

attempt to protect its intellectual property.

17

Fig. 7. The distance of testing files against the uniform distribution. X-Axis: the

test files, Y-Axis: the distance.

Table 7. Files whose content is deemed close to a uniform 1-gram distribution

(hence likely encrypted).

File name Description

Ieee-submission-

instruct.doc

An ieee submission format instruction Word file. It is

unclear why this file follows a normal distribution.

Ad-Aware.exe Ad-Aware.exe: ad-aware from lavasoft, searches and

removes spyware and/or adware programs from your

computer.

msgfix.exe msgfix.exe is the W32.Gaobot.SN Trojan. This Trojan

allows attackers to access your computer, stealing

passwords and personal data.

Qazxswcc.exe qazxswcc.exe is as a backdoor Trojan.

Asm.exe asm.exe is a commercial spyware program by Gator. This

program monitors browsing habits and distributes the

data back to a Gator server for analysis. This also

prompts advertising pop-ups.

wast2.exe wast2.exe is an adware based Internet Explorer browser

helper object that delivers targeted ads based on a user’s

browsing patterns.

4. Concluding Remarks

In this paper, we demonstrate that simple techniques to embed known

malcode in normal files can easily bypass signature-based detection. We

successfully inserted known malcode in non-executable (PDF and DOC)

files without being detected by AV scanners, and several were normally

opened and executed. Various code obfuscation techniques can also be

used by crafty attackers to avoid inspection by signature-based methods.

We propose an alternative approach to augment existing signature-based

protection mechanisms with statistical content analysis techniques. Rather

than only scanning for signatures, we compute the statistical binary content

of files in order to detect anomalous files or portions of files which may

indicate a malcode embedding. Although it may be relatively easy to

detect tainted files where malcode is embedded in the head (where normal

meta-data is expected) or at the tail of a file, detecting embeddings within

the interior portion of a file poses a significant challenge. The results show

that far more work is needed to identify files tainted by stealthy malcode

embeddings. On the positive side, self-encrypted files are relatively easy to

spot.

The results reported here are preliminary, and have opened up

other avenues of future work. For example, adherence to a 1-gram model

may not be the right strategy. Higher order grams may reveal more

structure in files, and help identify unusual segments worthy of deeper

analysis. Furthermore, file formats are defined by, typically, proprietary

and unpublished syntactic conventions providing markers delimiting

regions of files handled different (eg., embedded objects with specialized

methods for their processing) that may be analyzed by alternative methods.

Utilizing this information may provide a finer granularity of modeling

normal file formats and perhaps produce improved performance.

Finally, we believe another path may be useful, profiling applica-

tion execution when opening typical/normal files. It may be possible to

identify portions of files that harbor malcode by finding possible devia-

tions from normal application behavior. Combining static analysis with

dynamic program behavior analysis may be the best option for detecting

tainted files with embedded stealthy malcode.

References:

[1] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K.Xinidis, E. Markatos, and

A. D. Keromytis. “Detecting Targeted Attacks Using Shadow Honeypots”,

Proceedings of the 14
th

 USENIX Security Symposium, 2005.

19

[2] R. Balzer and N. Goldman, “Mediating Connectors”, Proceedings of the 19

IEEE International Conference on Distributed Computing Systems Workshop,

1994.

[3] M. Christodorescu and S. Jha, “Static Analysis of Executables to Detect

Malicious Patterns”, In Proceedings of the 12th USENIX Security Symposium,

August 2003

[4] M. Damashek. “Gauging similarity with n-grams: language independent

categorization of text.” Science, 267(5199):843--848, 1995

[5] E. Eskin, W. Lee and S. J. Stolfo. ``Modeling System Calls for Intrusion

Detection with Dynamic Window Sizes.'' Proceedings of DISCEX II. June

2001.

[6] J. Giffin, S. Jha, and B. Miller. “Detecting Manipulated Remote Call Streams”.

In the 11
th

 USENIX Security Symposium, 2002

[7] C. Ko, M. Ruschitzka, and K. Levitt. “Execution monitoring of security-

critical programs in distributed systems: A specification-based approach”. In

Proceedings of the IEEE Symposium on Security and Privacy, 1997.

[8] J. Kolter and M. Maloof. “Learning to Detect Malicious Executables in the

Wild.” In the Proceedings of ACM SIGKDD, 2004

[9] C. Krugel, W. Robertson, F. Valeur, G. Vigna. “Static Disassembly of

Obfuscated Binaries”. In Proceedings of USENIX Security Symposium, 2004.

[10] A. Kurchuk and A. Keromytis. “Recursive Sandboxes: Extending Systrace to

Empower Applications”. In Proceeding of the 19th IFIP International

Information Security Conference (SEC), Aug. 2004

[11] W. Li, K. Wang, S. Stolfo and B. Herzog. “Fileprints: identifying file types

by n-gram analysis”. 6
th

 IEEE Information Assurance Workshop, West Point,

NY, June, 2005.

[12] M. McDaniel, M. Heydari. “Content Based File Type Detection Algorithms”.

36
th

 Annual Hawaii International Conference on System Sciences (HICSS’03).

[13] G. Necula, P. Lee. “Proof-Carrying Code” In Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), 1997

[14] F. B. Schneider. “Enforceable security politics”. Technical Report 98-1664,

Cornell University, 1998

[15] M. Schultz, E. Eskin, and S. Stolfo. “Malicious Email Filter - A UNIX Mail

Filter that Detects Malicious Windows Executables.” In Proceedings of

USENIX Annual Technical Conference - FREENIX Track. Boston, MA: June

2001.

[16] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang and S. Zhou.

“Specification-Based Anomaly Detection: a new approach for detecting

network intrusions”, RAID 2002

[17] A. Shamir and N. van Someren. “Playing Hide and Seek with stored keys”,

Financial Cryptography 1999.

[18] D. Wagner and D. Dean. “Intrusion Detection via Static Analysis”. In IEEE

Symposium in Security and Privacy, Oakland, CA, 2001

[19] K. Wang, G. Cretu and S. Stolfo. “Anomalous Payload-based Worm

Detection and Signature Generation”. To appear in Proceedings of the Eighth

International Symposium on Recent Advances in Intrusion Detection, Sept.

2005.

[20] K. Wang and S. Stolfo. “Anomalous Payload-based Network Intrusion

Detection”. In Proceedings of the Seventh International Symposium on Recent

Advance in Intrusion Detection (RAID), Sept. 2004.

[21] C. Warrender, S. Forrest, and B. Pearlmutter. "Detecting intrusions using

System calls: alternative data models, Proc. of 1999 IEEE Symposium on

Security and Privacy, 1999.

[22] VX Heavens http://vx.netlux.org/

[23] Net Alliance http://www.shellcode.com.ar/docz/bof/pe.pdf

